Note
Functions for analyzing Langmuir output.
See also
Module author: Adam Gagorik <adam.gagorik@gmail.com>
Turn a list of pandas.DataFrame into a pandas.Panel.
Parameters: |
|
---|
>>> data1 = lm.common.load_pkl('run.0/calculated.pkl.gz')
>>> data2 = lm.common.load_pkl('run.1/calculated.pkl.gz')
>>> panel = create_panel([data1, data2], index=[0, 1])
Combine a set of panda’s DataFrames into a single DataFrame. The idea is that each DataFrame holds data from a part of some series of data. The index of each part should be the simulation:time.
Parameters: | objs (list) – list of pandas.DataFrame |
---|
>>> data1 = lm.datfile.load('part.0/out.dat.gz')
>>> data2 = lm.datfile.load('part.1/out.dat.gz')
>>> combined = lm.analyze.combine([data1, data2])
Compute all flux statistics. Calculates current using, for example, the number of carriers exiting a drain.
Parameters: | obj (pandas.DataFrame) – data |
---|
>>> data = lm.common.load_pkl('combined.pkl.gz')
>>> data = lm.analyze.calculate(data)
Get the difference between two steps.
Parameters: |
|
---|
>>> data = lm.common.load_pkl('combined.pkl.gz')
>>> data = lm.analyze.equilibrate(data, last=-1, equil=-1000)