
Langmuir Manual

Adam Gagorik

January 9, 2015

Contents

1 Introduction 2

2 Usage 3
2.1 Langmuir . 3
2.2 LangmuirView . 3

3 Input Files 4
3.1 Site IDs . 4
3.2 Agents . 5
3.3 Trap Potentials . 5
3.4 Flux State . 6
3.5 Random State . 6
3.6 Parameters . 7
3.7 Examples . 14

3.7.1 Transistor . 14
3.7.2 Solar Cell . 14
3.7.3 Scan . 15
3.7.4 Traps . 15
3.7.5 Defects . 15
3.7.6 Coulomb . 15

4 Output Files 16
4.1 Standard Output Files . 16

4.1.1 out.chk . 16
4.1.2 out.parm . 16
4.1.3 out.dat . 16
4.1.4 out.time . 17

4.2 Additional Output Files . 17
4.2.1 *.png . 18
4.2.2 out.coulomb . 18
4.2.3 out.grid . 18
4.2.4 out-carriers.dat . 19
4.2.5 out-excitons.dat . 19
4.2.6 out.xyz . 19

5 Batch Files 20
5.1 Cluster Commands . 20
5.2 Hutchison . 20
5.3 Frank . 21
5.4 Scan . 21

6 Langmuir Python 22
6.1 Installation . 22
6.2 Usage . 22

1

1 Introduction

Langmuir is a program written in c++ for the simulation of charge transport in organic semiconductors. The
simulation works by using Monte Carlo to predict the movement of charge carriers on a grid. Each site on the
grid represents an organic semiconducting molecule, and charge carriers, such as electrons or holes, can occupy the
sites. During each step of the simulation, all charge carriers propose hopping moves to adjacent sites, and use the
Metropolis criterion to decide the acceptance rate. Langmuir monitors the flux of charge carriers in and out of the
system, allowing the calculation of quantities such as current and mobility.

2

2 Usage

2.1 Langmuir

Langmuir is generally run inside a terminal.

adam@work: langmuir input.inp

Note that the langmuir command must be on your path. There is only one argument, the full path to the input file.
However, note that Langmuir will write output files to the directory it is called from. The format of the input file is
discussed in section 3. Often you will run Langmuir on a cluster. Details on how to run Langmuir on a cluster, as
well as sample batch scripts are included in section 5.

2.2 LangmuirView

LangmuirView is used to watch simulations graphically in real time with a GUI. LangmuirView can be run from a
terminal.

adam@work: langmuirView input.inp

Note that the langmuirView command must be on your path. Unlike the langmuir command, the input file argument
is optional. If no input file is given, then LangmuirView will open a file dialogue for you to choose the location of an
input file. An example of LangmuirView is shown in Figure 1.

Figure 1: LangmuirView example.

LangmuirView is a tool to be used to aid in understanding and communication to others, for example, to make
movies or screen shots. To perform actual simulations you should use Langmuir from the command line, as discussed
in section 2.1. This is because LangmuirView is limited by the size of the simulation and the production of output
data. Do not attempt to use LangmuirView with large systems that produce a large amount of output data.

3

3 Input Files

This section contains information on the format of Langmuir input files. Input files are just text files that you can
edit with any text editor. However, be warned that input files can be very long if they contain information on traps.
In this case, it is best to use a text editor capable of dealing with very large files. Input files can also be manipulated
using LangmuirPython, as discussed in section 6. In Langmuir, input files and checkpoint files are the same thing.
Periodically, a running simulation will save a checkpoint file. You can use this checkpoint file to extend the simulation
or change its parameters. The # symbol serves as a comment inside the input file. Any text after the # symbol is
ignored. The input file is divided into sections. Sections always start with a header. The valid section headers are
shown below.

• [Electrons]

• [Holes]

• [Defects]

• [Traps]

• [TrapPotentials]

• [FluxState]

• [RandomState]

• [Parameters]

The only required section is the [Parameters] section, and it must be the last section in the input file. Other
sections do not have to be in any particular order. Example input files are found in section 3.7.

3.1 Site IDs

The position of an agent in the grid can be thought of as a 3-tuple of integers (xi, yi, zi). This 3-tuple can be hashed
into a single number called the site-id, si. The dimensions of the grid are Lx, Ly, and Lz. Note that Lx, Ly, and Lz

are the grid.x, grid.y, and grid.z parameters discussed in section 3.6. The following equations hold for site-ids,
where all quantities are integers, and integer division applies.

0 ≤xi <Lx xi =si%Lx (1)

0 ≤yi <Ly yi =si/Lx − (si/(LxLy))Ly (2)

0 ≤zi <Lz zi =si/(LxLy) (3)

0 ≤si <LxLyLz si =Lx(yi + ziLy) + xi (4)

4

3.2 Agents

Electrons, holes, defects, and traps all follow the same format. Note that these sections are for providing information
on electrons, etc. already present in the system before the simulation starts. This is typically the case when extending
a run, or placing traps at well defined locations. You may leave these sections out. Langmuir has the ability to place
traps, defects, and carriers randomly if desired (see section 3.6).

It is very important that the parameters electron.percentage, hole.percentage, defect.percentage, and
trap.percentage are consistent with these sections. For example, while the number of electrons in the Electrons

section can be less than the maximum number of electrons allowed by electron.percentage, it can not exceed the
max. If there is a problem, langmuir will raise an error.

The first line is the section header written in square brakets. The next line is always the number of elements to
be read by langmuir. For example, for the electrons, the second line is the number of electrons. The remaining lines
are the site-ids for electrons, holes, defects, and traps. Site-id’s are discussed in section 3.1.

[Electrons] # section header

2 # number of electrons

100 # site-id of electron 1

200 # site-id of electron 2

[Holes] # section header

0 # number of holes

[Defects] # section header

0 # number of defects

[Traps] # section header

0 # number of traps

3.3 Trap Potentials

The [TrapPotentials] section is very similar in structure to the [Trap] section. The only difference is that instead
of site-ids, one lists the trap potentials in units of eV. If present, the [TrapPotentials] section must be the same
size as the [Traps] section. Note that if all traps have the same value, then this section can be omitted. In this
case, the value used for trap potential is taken from the trap.potential parameter (see section 3.6).

[TrapPotentials] # section header

2 # number of traps

0.50 # trap potential of trap 1

0.50 # trap potential of trap 2

5

3.4 Flux State

The [FluxState] is a list of 20 integers detailing the number of attempts and successes made by a flux agent.
Examples of flux agents are the sources and drains. There are 10 different flux agents in Langmuir. There are 2
source agents and 2 drain agents at xi = 0 and xi = Lx − 1, making a total of 8. The remaining 2 are an exciton
source, and a recombination drain. You probably never have to edit this section.

The codes should hopefully be easy to figure out...

ESLA = Electron Source Left Attempt

XDS = Recombination Drain Success

etc...

[FluxState] # section header

20 # number of flux agents

0 # ESLA

0 # ESLS

0 # ESRA

0 # ESRS

0 # HSLA

0 # HSLS

0 # HSRA

0 # HSRS

0 # XSA

0 # XSS

0 # EDLA

0 # EDLS

0 # EDRA

0 # EDRS

0 # HDLA

0 # HDLS

0 # HDRA

0 # HDRS

0 # XDA

0 # XDS

3.5 Random State

The [RandomState] is a very long list of integers that describe the exact state of the random number generator.
Due to limitations of the combination of boost, stdlib, and qt, it must be on one line. You should never have to edit
this section, other than deleting it.

[RandomState] # section header

1371835351 1524755492 3319441753 617340572... # list of numbers

6

3.6 Parameters

The parameters section is a list of key=value pairs that alter the behavior of the simulation. This section will often
be the only section in an input file. It must be present, and it must be the last section in the text file. Below is a
list of parameters and their descriptions.

keyword type default description

simulation.type string transistor
solarcell or transistor - changes the behavior of the
sources and drains.

random.seed int 0
if 0, then use the current time, else seed the random
number generator.

keyword type default description

grid.z int 1
The height of the device, or number of sites in the
z-direction (layers).

grid.y int 128
The width of device, or number of sites in the
y-direction.

grid.x int 128
The length of device, or number of sites in the
x-direction (source to drain).

hopping.range int 1
The number of adjacent sites to consider as
neighbors when hopping.

keyword type default description

iterations.real int 1000

The number of simulation steps, including
equilibration. It is up to you to remove the
equilibration steps from the output.

iterations.print int 10 The number of steps between printing output

current.step int 0
The starting step of the simulation. Needed for
checkpoint files.

7

keyword type default description

output.is.on bool True
Create output files. It is useful to turn off the
output when using LangmuirView.

output.precision int 15
The number of digits to print for numbers in
various output files.

output.width int 23 The width of columns in the output file.

output.stub string out

The naming scheme of output files. For example, if
stub is “out”, then the output files are “out.dat”,
“out.chk”, etc.

output.ids.on.delete bool False

Save carrier lifetime and path length to a file when
the carrier reaches a drain. This can make very
large files.

output.ids.on.encounter bool False

Save carrier lifetime and path length to a file when
the carrier forms an exciton. This can make very
large files.

output.coulomb int 0

Output the Coulomb energy of the entire grid every
iterations.print × output.coulomb steps. If
output.coulomb < 0, then save the Coulomb
energy when then the simulation finishes. This
requires OpenCL. If the grid is too large it may not
work if the GPU is too small.

output.step.chk int 1

Output checkpoint files every iterations.print ×
output.step.chk. When there is a large number of
trap sites, writing checkpoint files will slow the
simulation down. Use this parameter to make sure
checkpoint files are written far less often than the
iterations.print value.

output.chk.trap.potential bool False

Suppress the writing of trap potentials to the
checkpoint file. It is redundant and slow to output
trap potentials when they are all the same value.

output.potential bool False

Output the potential of the entire grid at the start
of the simulation. This grid potential does not
include the trap potential or the Coulomb
interactions.

8

keyword type default description

output.xyz int 0

Output carrier locations to an xyz file every
iterations.print × output.xyz. This file will be
large. This file will not open easily in VMD without
the use of a VMD extension because the number of
particles can change. There is a vmd.init file in
the Langmuir source directory to help with opening
this file.

output.xyz.e bool True Output the electrons to the xyz file.

output.xyz.h bool True Output the holes to the xyz file.

output.xyz.d bool True Output the defects to the xyz file.

output.xyz.t bool True

Output the traps to the xyz file. When there are
tons of traps, the size of the xyz file can become too
large to handle. You should suppress the output of
traps to the xyz file in this case.

output.xyz.mode int 0

When 0, the number of particles between frames in
the xyz file can vary. If 1, the number of particles is
kept constant using “phantom particles”

keyword type default description

image.traps bool False
Save a png of the traps at the start. Assumes
grid.z = 1.

image.defects bool False
Save a png of the defects at the start. Assumes
grid.z = 1.

image.carriers int 0

Save a png of the carriers every iterations.print

× image.carriers. If image.carriers < 0, then
save the png when then the simulation finishes.
Assumes grid.z = 1.

keyword type default description

electron.percentage float 0.01
Sets the maximum number of allowed electrons to
be the volume of the grid times this percentage.
Between 0 and 1.

hole.percentage float 0.0
Sets the maximum number of allowed holes to be
the volume of the grid times this percentage.
Between 0 and 1.

seed.charges float 0.0

The fraction of the maximum electrons/holes to
place randomly at the beginning of the simulation.
Between 0 and 1. This helps with equilibration in
transistors. Have not tested this in solar cells.

9

keyword type default description

defect.percentage float 0.0

Sets the maximum number of defects to be the
volume of the grid times this percentage. Between 0
and 1. Defects are placed randomly at the start.

defects.charge int 0
The charge of defects. If 0, then defects are not
included in Coulomb calculations.

keyword type default description

trap.percentage float 0.0

Sets the maximum number of traps to be the
volume of the grid times this percentage. Between 0
and 1. Traps are placed randomly.

seed.percentage float 1.0
The fraction of the traps to place as seeds.
Remaining traps are grown around these seeds.
Between 0 and 1.

trap.potential float 0.1 The trap energy to use for randomly placed traps.

gaussian.stdev float 0.0
Standard deviations of random noise to be added to
randomly placed traps.

keyword type default description

voltage.right float 0.0 The voltage of the drain electrode.

voltage.left float 0.0
The voltage of the source electrode. Keep this zero
and alter voltage.right.

exciton.binding float 0.0
The energy of interaction when a hole and electron
are on the same site.

slope.z float 0.0
The voltage change along the z direction due to a
gate electrode.

coulomb.carriers bool False Turn on Coulomb interactions.

coulomb.gaussian.sigma float 0.0

The standard deviation of smeared out Gaussian
charges. If 0, then point charges are used. Assumes
grid.z > 1.

temperature.kelvin float 300.0 The temperature used in the Boltzmann factor.

10

keyword type default description

source.rate float 0.9
Default probability to inject charges. Between 0
and 1.

e.source.l.rate float -1.0
Injection rate of electrons from the left. Overrides
source.rate. Ignored if < 0.

e.source.r.rate float -1.0
Injection rate of electrons from the right. Overrides
source.rate. Ignored if < 0.

h.source.l.rate float -1.0
Injection rate of holes from the left. Overrides
source.rate. Ignored if < 0.

h.source.r.rate float -1.0
Injection rate of holes from the right. Overrides
source.rate. Ignored if < 0.

generation.rate float 0.001
Injection rate of excitons. Overrides source.rate.
Ignored if < 0.

balance.charges bool False
Try to keep the number of electrons and holes
equal. Not physical.

source.metropolis bool False
Override source injection probability with a
metropolis criterion involving site energy.

source.coulomb bool False
Include coulomb interactions with image charges in
the metropolis criterion.

source.scale.area float 65536.0
Scale the generation rate by dividing by this value
and multiplying by the xy-area of the system.

11

keyword type default description

drain.rate float 0.9
Default probability to accept charges. Between 0
and 1.

e.drain.l.rate float -1.0
Acceptance rate of electrons on the left. Overrides
drain.rate. Ignored if < 0.

e.drain.r.rate float -1.0
Acceptance rate of electrons on the right. Overrides
drain.rate. Ignored if < 0.

h.drain.l.rate float -1.0
Acceptance rate of holes on the left. Overrides
drain.rate. Ignored if < 0.

h.drain.r.rate float -1.0
Acceptance rate of holes on the right. Overrides
drain.rate. Ignored if < 0.

recombination.rate float 0.0

Probability to recombine excitons. Note - it is not
really a rate like the others because the number of
excitons in the system is hard to predict.

recombination.range int 0
Number of adjacent sites to consider during
recombination.

12

keyword type default description

use.opencl bool False Use OpenCL for Coulomb calculations.

work.x int 4

The number of x-threads in a 3D work group. Only
used for output.coulomb. The total size of a work
group is W = work.x× work.y× work.z. The total
size of the grid is G = grid.x× grid.y× grid.z.
The total number of threads used by the 3D kernel
is T = G×W . The 3D kernel will fail if you exceed
the limitations of the GPU. This could be fixed by
dividing the grid into sections and using multiple
GPU’s or multiple calls to one GPU. The max W
allowed on GTX460 is 1024. The max T allowed on
GTX460 is 1024 × 1024 × 64. Therefore, the
maximum number of grid sites that could be
handled is 65536 = 2562.

work.y int 4
The number of y-threads in a 3D work group. See
work.x for more info.

work.z int 4
The number of z-threads in a 3D work group. See
work.x for more info.

work.size int 256

The number of threads W in a 1D work group. The
total number of threads used during a coulomb
calculation is T = N ×W , where N is the total
number of charges. It is unlikely you will exceed
the total number of allowed threads on the GPU.
For magical reasons, this parameter seems to be
optimal at 256. The maximum value of W on a
GTX460 is 1024. The maximum number of threads
on a GTX460 is 1024 × 1024 × 64. Therefore, the
maximum number of charges allowed when
W = 256 is N = 262144.

opencl.threshold int 256

The number of charges that must be present before
turning on OpenCL. OpenCL will be slower than
the CPU for small numbers of charges.

opencl.device.id int 0

The id of the GPU. This parameter is ignored. A
file specified by the environment variable
PBS GPUFILE will determine the gpu unless the
command line option –gpu is present. The gpu id
will be saved to this parameter.

max.threads int -1

The max number of CPU threads allowed. This
parameter is ignored. A file specified by the
environment variable PBS NODEFILE will
determine the number of threads unless the
command line option -n is present. As a last resort,
the number of threads will be determined by
QtConcurrent. The number of threads is saved to
this parameter.

13

3.7 Examples

This section contains sample input files.

3.7.1 Transistor

[Parameters]

simulation.type = transistor

grid.x = 1024

grid.y = 256

grid.z = 1

iterations.real = 500000

iterations.print = 1000

electron.percentage = 0.10

seed.charges = 1.00 # speed up equilibration

voltage.right = 5.00

voltage.left = 0.00

coulomb.carriers = true

use.opencl = true

3.7.2 Solar Cell

[Parameters]

simulation.type = solarcell

grid.x = 256

grid.y = 256

grid.z = 1

iterations.real = 20000000 # much longer than transistor

iterations.print = 1000

electron.percentage = 0.10

hole.percentage = 0.10

trap.percentage = 0.50

trap.potential = 0.50

seed.percentage = 0.10

voltage.right = 9.00

voltage.left = 0.00

source.rate = 1e-3

recombination.rate = 1e-4

coulomb.carriers = true

use.opencl = true

14

3.7.3 Scan

Set a variable equal to a list of values. This works for any variable. See section 6.

[Parameters]

...

voltage.right = [-2.0, -1.5, -1.0, -0.8, -0.6, -0.4, -0.2, 0.0]

...

To generate input files.

adam@work: python scan.py --real 500000 --print 1000 --mode gen

To run Langmuir in real time.

adam@work: python scan.py --real 500000 --print 1000 --mode scan

3.7.4 Traps

[Parameters]

...

trap.percentage = 0.50 # 50-percent traps

seed.percentage = 0.10 # 10-percent seeds

trap.potential = 0.05 #

...

3.7.5 Defects

[Parameters]

...

defect.percentage = 0.50 # 50-percent defects

defect.charge = 0 # neutral defects

...

3.7.6 Coulomb

[Parameters]

...

coulomb.carriers = true # turn on coulomb interations

use.opencl = true # use GPU

output.coulomb = 10 # output energy every 10 iterations.print

...

To calculate coulomb energy of a checkpoint file you can use the python script coulomb.py. If the system is too big
for the GPU you have to use coulomb.py. Or you can run langmuir again.

[Parameters]

...

iterations.real = 0 # do not simulate anything

output.coulomb = -1 # output energy at the end

...

15

4 Output Files

4.1 Standard Output Files

Langmuir will always output the following files. The name of the output file is controlled with the output.stub

parameter. The generation of output can be turned off with the output.is.on parameter.

• out.dat

• out.chk

• out.parm

If Langmuir finishes successfully, then additional files may appear.

• out.time

Langmuir also writes information to the screen of what it is doing. On a cluster this information is often captured
by the stderr file.

4.1.1 out.chk

This is the checkpoint file. The format of this file is discussed in section 3. Checkpoint files allow one to extend a
simulation or change its parameters. They can easily be manipulated in a text editor or using LangmuirPython (see
section 6). Checkpoint files are output every iterations.print × output.step.chk steps.

It may be useful to structure your simulation directories to reflect the idea of “parts” of a simulation. The
LangmuirPython script combine.py allows you to combine the output of the various parts. In the example below,
the checkpoint file from part.0 is used as the input file of part.1.

simulation/

part.0/

out.dat

out.chk

part.1/

out.dat

out.chk

4.1.2 out.parm

This is a condensed input-like file that contains only the [Parameters] section (see section 3). The file is produced
only once, at the start of a simulation. It can be faster to parse this file in scripts than a full blown checkpoint file
with many traps.

4.1.3 out.dat

This is the main output file of Langmuir. Every iterations.print, statistics from the simulation are written to
this file. The output columns are named at the top of the file.

simulation:time # step (ps)

eSourceL:success # success count

eSourceL:attempt # attempt count

...

electron:count # number of electrons

hole:count # number of holes

real:time # clock time (ms)

There is a success and attempt column for each of the 10 FluxAgents.
Various quantities can be computed from these statistics. These quantities are not computed by Langmuir, it is

left up to the simulator in post-analysis stage. To calculate the probability of a FluxAgent, divide the successes by
the attempts.

P =
S

A
× 100% (5)

16

To calculate the rate of a FluxAgent, divide the success by the step.

R =
S

T
[ps−1] (6)

To calculate the current of a FluxAgent, multiply the rate by e and convert to nA.

I = e×R [C ps−1] (7)

Current is calculated from the success rate of drains. When simulations contain multiple drains for different carrier
types, care must be taken when calculating the current. SeDL is the success rate of the electron drain on the left.
SeDR is the success rate of the electron drain on the right. ShDL is the success rate of the hole drain on the left.
ShDR is the success rate of the hole drain on the right. The current is defined to be positive for the movement of
electrons to right.

I =
(SeDR − SeDL) + (ShDL − ShDR)

T
× e (8)

To account for equilibration, one must subtract the line containing the start of “production steps” (chosen by
the simulator) from the ending line of the simulation. This process was removed from Langmuir to simplify the
generation of checkpoint files. For example, consider a system where the ElectronSourceAgent has a success rate of
100 at 100000 steps into the simulation and a success rate of 500 at 500000 steps into the simulation, the end of
the simulation. To account for 100000 steps of equilibration, the final success rate will be 500 − 100 = 400. This
operation must be applied for every column of the output file. The LangmuirPython script gather.py performs this
operation on the files produced by combine.py.

4.1.4 out.time

This file contains the total time taken to perform the simulation in various units. The file is only written at the end
of a simulation. If Langmuir fails to finish, timing information is also present in out.dat.

4.2 Additional Output Files

If Langmuir is run on a cluster, various cluster related files may also appear.

• stdout files

• stderr files

Images of the grid can be produced using various input parameters (see section 3.6).

• out-traps.png

• out-defects.png

• out-%step-electrons.png

• out-%step-holes.png

• out-%step-carriers.png

• out-%step-all.png

Information on energy and potential may be produced (see section 3.6).

• out.grid

• out-%step.coulomb

Information on carrier lifetime and path length may be produced (see section 3.6).

• out-carriers.dat

• out-excitons.dat

Finally, the trajectory of carriers can be produced.

• out.xyz

17

4.2.1 *.png

These are just crappy png files produced using Qt. There are much better ways of making pictures. For example,
you can use LangmuirPython to use information in a checkpoint file to draw a picture with matplotlib. Also, the
LangmuirPython chk2vtk.py will produce vtk files that can be opened in various programs, such as paraview or
mayavi.

4.2.2 out.coulomb

This file contains the following columns.

s # site-id

x # x-value

y # y-value

z # z-value

v # potential

It is useful to produce contour maps of this data in python with matplotlib. If you really want to see things in 3D
you can make contour iso-surfaces in other programs, such as paraview.

from scipy.iterpolate import griddata

import matplotlib.pyplot as plt

import numpy as np

data = np.genfromtxt(’out.coulomb’, names=True)

x, y, z, v = data[’x’], data[’y’], data[’z’], data[’v’]

data must be put on a mesh to plot it

mesh_x, mesh_y, mesh_z = np.mgrid[0:64:1, 0:64:1, 0:1:1]

mesh_v = griddata((x, y, z), v, (mesh_x, mesh_y, mesh_z))

we can only view things in 2D

mesh_x = mesh_x[:,:,0]

mesh_y = mesh_y[:,:,0]

mesh_v = mesh_v[:,:,0]

plt.contour(mesh_x, mesh_y, mesh_v, 32)

plt.show()

4.2.3 out.grid

This file is very similar to out.coulomb.

s # site-id

x # x-value

y # y-value

z # z-value

e # electron grid potential

h # hole grid potential

18

4.2.4 out-carriers.dat

s # site-id

x # x-value

y # y-value

z # z-value

agent # electron or hole

address # unique ID

lifetime # ps

pathlength # nm

step # ps

4.2.5 out-excitons.dat

s1 # site-id

x1 # x-value

y1 # y-value

z1 # z-value

agent1 # electron or hole

address1 # unique ID

lifetime1 # ps

pathlength1 # nm

s2 # site-id

x2 # x-value

y2 # y-value

z2 # z-value

agent2 # electron or hole

address2 # unique ID

lifetime2 # ps

pathlength2 # nm

step # ps

recombined # boolean

4.2.6 out.xyz

agent # E, H, D, T

x # x-value

y # y-value

z # z-value

19

5 Batch Files

Details on how to run Langmuir on a cluster are discussed in this section.

5.1 Cluster Commands

show the jobs

qstat

submit a batch script

qsub -N jobname run.batch

5.2 Hutchison

On hutchison.chem.pitt.edu, one can use the submitLangmuir command.

submitLangmuir jobname job.inp

Or you can use a batch script such as the one below.

#!/bin/sh

#£ -S /bin/bash

#£ -pe mpi 4

#£ -R y

#£ -cwd

INPUT=$1

WORK=$2

BIN=/usr/local/bin

EXE=langmuir

SCRATCH=/scratch/${USER}/${JOB_ID}

if [-d /scratch/${USER}]; then

touch /scratch/${USER}

else

mkdir /scratch/${USER}

fi

mkdir ${SCRATCH}

if [-f ${INPUT}]; then

cp ${INPUT} ${SCRATCH}

else

exit

fi

cd ${SCRATCH}

${BIN}/${EXE} ${INPUT}

gzip ${SCRATCH}/* -rv

cp -r ${SCRATCH}/* ${WORK}

20

hutchison.chem.pitt.edu

5.3 Frank

On frank.sam.pitt.edu, use the following batch script. Make sure to set the path to langmuir in the BIN variable.

#!/bin/bash

#PBS -q gpu

#PBS -l nodes=1:ppn=3:gpus=1

#PBS -l mem=4gb

#PBS -l walltime=72:00:00

BIN=/home/ghutchison/agg7/bin

EXE=langmuir

NME=sim.inp

module load cuda/4.2

module load boost

module load qt

cd $PBS_O_WORKDIR

$BIN/$EXE $NME

5.4 Scan

Sometimes, instead of running a single langmuir simulation, one may want to scan over many values of a variable.
In the LangmuirPython module (see section 6), there is a script called scan.py. This script (scan.py) lets python
guide the scanning of a working variable. For example, one can scan voltage.right to create an IV curve. Instead
of setting a variable in the input file to a single value, set it to a list of values.

voltage.right = [-1.0, -2.0, -3.0]

Actually, scan.py can parse any valid python statement, including numpy.

voltage.right = [float(i) for i in range(0, 100, 10)]

voltage.right = np.linspace(0, 100, 10)

Multiple working variables are not supported. You must use an altered batch script to run scan.py. Make sure
the script correctly sets the $PYTHONPATH to point to LangmuirPython. Below is an example batch script for
frank.sam.pitt.edu.

#!/bin/bash

#PBS -q gpu

#PBS -l nodes=1:ppn=4:gpus=1

#PBS -l mem=4gb

#PBS -l walltime=36:00:00

BIN=/home/ghutchison/agg7/bin

EXE=scan.py

NME=sim.inp

module load cuda/4.2

module load python

module load boost

module load qt

export PYTHONPATH=$PYTHONPATH:/home/ghutchison/agg7/LangmuirPython

cd $PBS_O_WORKDIR

python $BIN/$EXE --real 7500000 --print 1000 --fmt ’%+.1f’ --mode scan

21

frank.sam.pitt.edu

6 Langmuir Python

There is a python project called LangmuirPython, that aids in the construction of input files, the running of sim-
ulations, and the analysis of output files. The use of LangmuirPython in not required. There is documentation in
the code. A pdf and/or html webpage of the documentation can be generated with Sphinx. Simply navigate to the
LangmuirPython doc directory, and use the Makefile. Sphinx must be installed.

6.1 Installation

LangmuirPython uses a number of python modules that may not be included in standard python distributions. You
should make an effort to install these python modules, for example, using pip. If modules are missing, an effort has
been made to disable certain features of the langmuir module.

• numpy

• scipy

• matplotlib

• pandas

• quantities

• vtk (optional)

To install LangmuirPython, you must do one of the following.

1. Put the path to LangmuirPython on your $PYTHONPATH.

set £PYTHONPATH inside batch scripts or bashrc

export PYTHONPATH=$PYTHONPATH:/path/to/LangmuirPython

2. Use the setup.py script in the LangmuirPython directory.

adam@work: cd /path/to/LangmuirPython

to install locally

adam@work: python setup.py install --user

to install globally (need root password)

adam@work: python setup.py install

6.2 Usage

To use the langmuir module in python you must import it.

>>> import langmuir as lm

The checkpoint submodule is very useful for manipulating inputs file from python.

>>> import langmuir as lm

>>> chk = lm.checkpoint.load(’out.chk’)

>>> chk.electrons = [] # delete electrons

>>> chk[’iterations.real’] += 100000

>>> chk.save(’sim.inp’)

The usage of most scripts can be determined by using the -h or –help command line flag.

adam@work: python /path/to/LangmuirPython/utils/scan.py --help

22

Some scripts should be pointed out.

• /utils/scan.py

--mode scan actually runs langmuir

the output of one simulation serves as the input of the next

sim.inp has a working variable set to a list of values

example: voltage.right = [1, 2, 3, 4, 5]

adam@work: python scan.py --real 500000 --mode scan sim.inp

--mode gen generates simulations input

adam@work: python scan.py --real 500000 --mode gen sim.inp

• /analyze/combine.py

combines the output of "parts"

adam@work: python combine.py -r

• /analyze/gather.py

gathers output from simulations

use this inside a "run" directory

adam@work: python gather.py -r --equil 10000

A lot of the scripts rely on you structuring your simulations.

system/

run.0/

voltage.right_+0.0/

part.0/

out.dat

out.chk

part.1/

...

...

voltage.right_+0.1/

...

run.1/

run.2/

...

23

	Introduction
	Usage
	Langmuir
	LangmuirView

	Input Files
	Site IDs
	Agents
	Trap Potentials
	Flux State
	Random State
	Parameters
	Examples
	Transistor
	Solar Cell
	Scan
	Traps
	Defects
	Coulomb

	Output Files
	Standard Output Files
	out.chk
	out.parm
	out.dat
	out.time

	Additional Output Files
	*.png
	out.coulomb
	out.grid
	out-carriers.dat
	out-excitons.dat
	out.xyz

	Batch Files
	Cluster Commands
	Hutchison
	Frank
	Scan

	Langmuir Python
	Installation
	Usage

